

Welcome to Pyfolio Performance’s documentation!

Installation can be done through pip install pyfolio-performance or via Github [https://github.com/bendun-io/pyfolio-performance].

Contents:

	API
	Portfolio

	Account

	Depot

	Security

	Portfolio Performance Object

	Date Object

	Filters

	Examples
	First Example: Loading the portfolio

	Analysis: Dividend of the month

Indices and tables

	Index

	Module Index

	Search Page

API

In the following, we have the documentation of the library’s classes.

	Portfolio
	Portfolio
	Portfolio.evaluateCluster()

	Portfolio.getAccounts()

	Portfolio.getDepots()

	Portfolio.getInvestmentInto()

	Portfolio.getSecurities()

	Portfolio.getShares()

	Portfolio.getTotalTransactions()

	Account
	Account
	Account.getBalance()

	Account.getName()

	Account.getTransactions()

	Depot
	Depot
	Depot.getDepotByName()

	Depot.getName()

	Depot.getSecurities()

	Depot.getTransactions()

	Security
	Security
	Security.getMostRecentValue()

	Security.getName()

	Security.getSecurityByIsin()

	Security.getSecurityByName()

	Security.getSecurityByWkn()

	Portfolio Performance Object
	PortfolioPerformanceObject
	PortfolioPerformanceObject.getObjectByAttribute()

	PortfolioPerformanceObject.parse()

	PortfolioPerformanceObject.parseByReference()

	Date Object
	DateObject
	DateObject.getDay()

	DateObject.getMonth()

	DateObject.getOrderValue()

	DateObject.getYear()

	Filters
	Filters
	Filters.fAnd()

	Filters.fBefore()

	Filters.fDay()

	Filters.fDepotTransaction()

	Filters.fEnsureTypeList()

	Filters.fExcludeTypeList()

	Filters.fMonth()

	Filters.fOr()

	Filters.fSecurityTransaction()

	Filters.fYear()

Portfolio

	
class pyfolio_performance.Portfolio(filename)

	The main class to parse and access different aspects of a portfolio stored in a XML file.

Uses the XML file created by portfolio performance.

	Parameters:

	filename (str) – The path of the XML file to parse.

	
evaluateCluster(clusters, fn_filter, fn_getClusterId, fn_aggregation)

	Evaluates all transactions of the portfolio as follows.
Every transaction that is successfully filtered by fn_filter, gets put in a cluster through fn_getClusterId.
The objects in the cluster are aggregated through the fn_aggregation function.

	Parameters:

	
	clusters (dict(object) / {k->v}) – The overall clusters.

	fn_filter (function(transaction) -> bool) – Filter function. An entry needs to pass the filter with True to be considered.

	fn_getClusterId (function({k->v}, Transaction) -> k) – Given the cluster and the transaction, this method gives the key to the cluster the transaction belongs to.

	fn_aggregation (function(v, Transaction) -> v) – The aggregation function that combines cluster values. This updates the cluster itself at the position cluster-id for every considered transaction.

	Returns:

	Nothing is returned.

	Type:

	None

	
getAccounts()

	Returns the list of Account objects in the portfolio.

	Returns:

	The extracted Account list.

	Type:

	list(Account)

	
getDepots()

	Returns the list of Depot objects in the portfolio.

	Returns:

	The extracted Depot list.

	Type:

	list(Depot)

	
getInvestmentInto(security, before=None)

	Computes how much is invested into a specific security before a given date. If no date is given, the total investment is calculated.

	Returns:

	value in cents of investement

	Type:

	int

	
getSecurities()

	Returns the list of all unique securities in any depot.
:return: The list.
:type: list(Security)

	
getShares(theSecurity)

	Returns the number of shares that the given security objects has in the portfolio overall.

	Parameters:

	theSecurity (Security) – The security queried.

	Returns:

	The number of shares in all depots summed up.

	Type:

	float

	
getTotalTransactions()

	Returns the list of all transactions in the portfolio across all depots and accounts.

	Returns:

	The extracted transaction list.

	Type:

	list(Transaction)

Account

	
class pyfolio_performance.Account

	The class that manages a money account and its transactions.

	
getBalance()

	
	Returns:

	Balance of the account in cents.

	Type:

	int

	
getName()

	
	Returns:

	Name of the account.

	Type:

	str

	
getTransactions()

	
	Returns:

	list of transactions in the account.

	Type:

	list(Transaction)

Depot

	
class pyfolio_performance.Depot(name, xml)

	The class that manages a depot and its transactions.

	
static getDepotByName(name)

	If no such Depot exists, it returns an empty depot with the name.
If it exists, it returns the corresponding Depot.

	Param:

	Name of the depot that should be returned

	Type:

	str

	Returns:

	Existing or new Depot

	Type:

	Depot

	
getName()

	
	Returns:

	Name of the depot.

	Type:

	str

	
getSecurities()

	
	Returns:

	Mapping of currently Securities to the number of contained shares

	Type:

	dict(Security -> float)

	
getTransactions()

	
	Returns:

	list of transactions in the depot.

	Type:

	list(Transaction)

Security

	
class pyfolio_performance.Security(xml)

	A class that manages securities.

	
getMostRecentValue()

	
	Returns:

	Current security price from the file in Euro.

	Type:

	float

	
getName() → str

	
	Returns:

	Name of the security

	Type:

	str

	
static getSecurityByIsin(isin)

	
	Param:

	Isin of security that should be returned.

	Type:

	str

	Returns:

	existing security object or None

	Type:

	Security

	
static getSecurityByName(name)

	
	Param:

	Name of security that should be returned.

	Type:

	str

	Returns:

	existing security object or None

	Type:

	Security

	
static getSecurityByWkn(wkn)

	
	Param:

	Wkn of security that should be returned.

	Type:

	str

	Returns:

	existing security object or None

	Type:

	Security

Portfolio Performance Object

	
class pyfolio_performance.PortfolioPerformanceObject

	Base class for most objects in the library.
Offers basic functionality needed, such as:
- cache of already parsed objects,
- resolution of objects that are defined by references,
- general parsing methods.

	
classmethod getObjectByAttribute(attr, value)

	Note it only works if there is a single object for the attribute and the value.
For example, we can ask for the attribute isin of a security with the value DE0005190003 leading to BMW.

	Parameters:

	
	attr (str) – the attribute we are looknig for

	value (str) – the value the attribute should have

	Returns:

	the store object for the value

	Type:

	object

	
classmethod parse(root, xml)

	This methods parses portfolio performance objects.
It returns the parsed result of the referenced xml.

	Parameters:

	
	root (xml) – Root of the parsing, in case it is needed to resolve references.

	xml (xml) – Object to be parsed.

	Returns:

	Parsed object.

	Type:

	Subclass of PortfolioPerformanceObject

	
classmethod parseByReference(root, reference)

	This methods resolves the attribute referenced.
It returns the parsed result of the referenced xml.

	Parameters:

	
	root (xml) – Root from where the reference is searched in the XML.

	reference (str) – Encoding of the reference

	Returns:

	Parsed object.

	Type:

	Subclass of PortfolioPerformanceObject

Date Object

	
class pyfolio_performance.DateObject(dateStr)

	Represents a data of a transaction.

	Parameters:

	dateStr – Date string as used by portfolio performance in the XML.

	
getDay()

	
	Returns:

	Returns the day in the month of the date.

	Type:

	int

	
getMonth()

	
	Returns:

	Returns the month of the date.

	Type:

	int

	
getOrderValue()

	Used to order dates. Gives a comparable int s.t. getOrderValue(a) < getOrderValue(b) iff the date a was before the date b.
:return: Returns an int representing the position in an order of the date.
:type: int

	
getYear()

	
	Returns:

	Returns the year of the date.

	Type:

	int

Filters

	
class pyfolio_performance.Filters

	Class that provides usefull filtering functions for the cluster analysis.

	
static fAnd(f1, f2)

	
	Parameters:

	
	f1 – First function.

	f2 – Second function.

	Type:

	function entry -> bool

	Type:

	function entry -> bool

	Returns:

	Returns a function that first evaluates both functions and returns the and.

	Type:

	Entry -> bool

	
static fBefore(date)

	
	Parameters:

	year (DateObject) – The date to filter for.

	Returns:

	A filter function that ensures the entry was made before or on the date (<=).

	Type:

	Entry -> bool

	
static fDay(day)

	
	Parameters:

	day (int) – The day to filter for.

	Returns:

	A filter function that ensures the entry was made in the specified day.

	Type:

	Entry -> bool

	
static fDepotTransaction()

	
	Returns:

	A filter function that ensures the entry is a Depot Transaction.

	Type:

	Entry -> bool

	
static fEnsureTypeList(typelist)

	
	Parameters:

	typelist (list(str)) – List of types that are required by the filter.

	Returns:

	A filter function that ensures the entry has a type contained in the typelist.

	Type:

	Entry -> bool

	
static fExcludeTypeList(typelist)

	
	Parameters:

	typelist (list(str)) – List of types that are not allowed by the filter.

	Returns:

	A filter function that ensures the entry has not a type contained in the typelist.

	Type:

	Entry -> bool

	
static fMonth(month)

	
	Parameters:

	month (int) – The month to filter for.

	Returns:

	A filter function that ensures the entry was made in the specified month.

	Type:

	Entry -> bool

	
static fOr(f1, f2)

	
	Parameters:

	
	f1 – First function.

	f2 – Second function.

	Type:

	function entry -> bool

	Type:

	function entry -> bool

	Returns:

	Returns a function that first evaluates both functions and returns the or.

	Type:

	Entry -> bool

	
static fSecurityTransaction(sec)

	
	Parameters:

	sec (Security) – A security to filter for.

	Returns:

	A filter function that ensures the entry is a transaction about the given security.

	Type:

	Entry -> bool

	
static fYear(year)

	
	Parameters:

	year (int) – The year to filter for.

	Returns:

	A filter function that ensures the entry was made in the specified year.

	Type:

	Entry -> bool

Examples

Some examples of how the pyfolio performance library can be used to analyse to analyse your portfolio.

	First Example: Loading the portfolio

	Analysis: Dividend of the month

First Example: Loading the portfolio

In this example we load the portfolio and display some content.

from pyfolio-performance import Portfolio

portfolio = Portfolio("portfolio.xml")

print(portfolio.getAccounts())
print(portfolio.getDepots())

The result will look like:

[Account/Comdirect Cash: 2500, Account/Norisbank: 30100, Account/P2P Bondora: 80000]
[Depot/Comdirect, Depot/Consorsbank]

The string method for the accounts and the depots returns the type followed by a / and then the name
of the object as it appears in portfolio performance.

The account representation also includes the value of the account in cents.

Analysis: Dividend of the month

In the following example we compute the dividends received this month in 2 different way.
The first one simply aggregates the dividend. The second examlpe aggregates it by security.

from pyfolio_performance import Portfolio, Filters
from datetime import datetime
portfolio = Portfolio("portfolio.xml")
currentNow = datetime.now()

def filter_month(entry, month, year):
 if year != entry.getYear() or month != entry.getMonth():
 return False
 return True

filter_dividend = Filters.fAnd(Filters.fEnsureTypeList(['DIVIDENDS']),
 lambda entry: filter_month(entry, currentNow.month, currentNow.year))

different clustering
def cluster_dividend(allCluster, entry):
 return "val"

def aggregate_dividend(cluster, entry):
 return cluster + entry.getValue()

divicluster = {'val': 0}
portfolio.evaluateCluster(divicluster, filter_dividend, cluster_dividend, aggregate_dividend)
print(divicluster)

Dividends are clustered by their name
def cluster_dividend2(allCluster, entry):
 k = entry.getSourceName()
 if k not in allCluster:
 allCluster[k] = 0
 return k
divicluster = {}
portfolio.evaluateCluster(divicluster, filter_dividend, cluster_dividend2, aggregate_dividend)
print(divicluster)

The code leads to the following two outputs. The first one simply gives the sum of all dividends.
The second one aggregates it by the security that distributes the dividend.

The value is returned in cents. There were 13,79 received through the securities AT + T,
Realty Income and Proctor and Gamble. The displayed name and corresponding key used in the code
reflects the name given in portfolio performance’s security section.

{'val': 1379}
{'AT + T': 190, 'Realty Income': 781, 'Proctor and Gamble': 408}

Index

 A
 | D
 | E
 | F
 | G
 | P
 | S

A

 	
 	Account (class in pyfolio_performance)

D

 	
 	DateObject (class in pyfolio_performance)

 	
 	Depot (class in pyfolio_performance)

E

 	
 	evaluateCluster() (pyfolio_performance.Portfolio method)

F

 	
 	fAnd() (pyfolio_performance.Filters static method)

 	fBefore() (pyfolio_performance.Filters static method)

 	fDay() (pyfolio_performance.Filters static method)

 	fDepotTransaction() (pyfolio_performance.Filters static method)

 	fEnsureTypeList() (pyfolio_performance.Filters static method)

 	
 	fExcludeTypeList() (pyfolio_performance.Filters static method)

 	Filters (class in pyfolio_performance)

 	fMonth() (pyfolio_performance.Filters static method)

 	fOr() (pyfolio_performance.Filters static method)

 	fSecurityTransaction() (pyfolio_performance.Filters static method)

 	fYear() (pyfolio_performance.Filters static method)

G

 	
 	getAccounts() (pyfolio_performance.Portfolio method)

 	getBalance() (pyfolio_performance.Account method)

 	getDay() (pyfolio_performance.DateObject method)

 	getDepotByName() (pyfolio_performance.Depot static method)

 	getDepots() (pyfolio_performance.Portfolio method)

 	getInvestmentInto() (pyfolio_performance.Portfolio method)

 	getMonth() (pyfolio_performance.DateObject method)

 	getMostRecentValue() (pyfolio_performance.Security method)

 	getName() (pyfolio_performance.Account method)

 	(pyfolio_performance.Depot method)

 	(pyfolio_performance.Security method)

 	
 	getObjectByAttribute() (pyfolio_performance.PortfolioPerformanceObject class method)

 	getOrderValue() (pyfolio_performance.DateObject method)

 	getSecurities() (pyfolio_performance.Depot method)

 	(pyfolio_performance.Portfolio method)

 	getSecurityByIsin() (pyfolio_performance.Security static method)

 	getSecurityByName() (pyfolio_performance.Security static method)

 	getSecurityByWkn() (pyfolio_performance.Security static method)

 	getShares() (pyfolio_performance.Portfolio method)

 	getTotalTransactions() (pyfolio_performance.Portfolio method)

 	getTransactions() (pyfolio_performance.Account method)

 	(pyfolio_performance.Depot method)

 	getYear() (pyfolio_performance.DateObject method)

P

 	
 	parse() (pyfolio_performance.PortfolioPerformanceObject class method)

 	parseByReference() (pyfolio_performance.PortfolioPerformanceObject class method)

 	
 	Portfolio (class in pyfolio_performance)

 	PortfolioPerformanceObject (class in pyfolio_performance)

S

 	
 	Security (class in pyfolio_performance)

 nav.xhtml

 Table of Contents

 		
 Welcome to Pyfolio Performance’s documentation!

 		
 API

 		
 Portfolio

 		
 Portfolio

 		
 Account

 		
 Account

 		
 Depot

 		
 Depot

 		
 Security

 		
 Security

 		
 Portfolio Performance Object

 		
 PortfolioPerformanceObject

 		
 Date Object

 		
 DateObject

 		
 Filters

 		
 Filters

 		
 Examples

 		
 First Example: Loading the portfolio

 		
 Analysis: Dividend of the month

_static/file.png

_static/minus.png

_static/plus.png

